
Unlinkable Serial Transactions: Protocols
and Applications

STUART G. STUBBLEBINE
CertCo
PAUL F. SYVERSON
Naval Research Laboratory
and
DAVID M. GOLDSCHLAG
USinternetworking, Inc.

We present a protocol for unlinkable serial transactions suitable for a variety of network-
based subscription services. It is the first protocol to use cryptographic blinding to enable
subscription services. The protocol prevents the service from tracking the behavior of its
customers, while protecting the service vendor from abuse due to simultaneous or “cloned“ use
by a single subscriber. Our basic protocol structure and recovery protocol are robust against
failure in protocol termination. We evaluate the security of the basic protocol and extend the
basic protocol to include auditing, which further deters subscription sharing. We describe
other applications of unlinkable serial transactions for pay-per-use transactions within a
subscription, third-party subscription management, multivendor coupons, proof of group
membership, and voting.

Categories and Subject Descriptors: J.1 [Computer Applications]: Administrative Data
Processing; D.4.6 [Operating Systems]: Security and Protection—Access controls; Crypto-
graphic controls; Authentication; K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Authentication; Unauthorized access (e.g., hacking,
phreaking); H.3.4 [Information Storage and Retrieval]: Systems and Software—User
profiles and alert services; H.2.4 [Database Management]: Systems—Transaction process-
ing; H.3.7 [Information Storage and Retrieval]: Digital Libraries—User issues

General Terms: Design, Security, Verification

Additional Key Words and Phrases: Anonymity, blinding, cryptographic protocols, unlinkable
serial transactions

A preliminary version of this paper appeared previously; see Syverson et al. [1997]. Work by
the first author was primarily supported by AT&T Research, Florham Park, NJ. Work by the
second and third authors was supported by ONR.
Authors’ addresses: S. G. Stubblebine, CertCo, New York, NY 10004; email:
stubblebine@cs.columbia.edu; P. F. Syverson, Center for High Assurance Computer Systems,
Naval Research Laboratory, Washington, DC 20375; email: syverson@itd.nrl.navy.mil; D. M.
Goldschlag, USinternetworking, Inc., One USi Plaza, Annapolis, MD 21401; email:
david@goldschlag.com.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2000 ACM 1094-9224/99/1100–0354 $5.00

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999, Pages 354–389.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1999 2. REPORT TYPE

3. DATES COVERED
 00-00-1999 to 00-00-1999

4. TITLE AND SUBTITLE
Unlinkable Serial Transactions: Protocols and Applications

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Center for High Assurance Computer
Systems,4555 Overlook Avenue, SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

36

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1. INTRODUCTION

This paper is motivated by the conflict of interest inherent in maintaining
privacy in an electronic exchange. Commercial service providers would like
to make sure that they are paid for their services and protected from abuse
due to simultaneous or “cloned” use by a single subscriber. To this end,
they have an interest in keeping a close eye on customer behavior. On the
other hand, customers have an interest in maintaining the privacy of their
personal information, in particular, profiles of their commercial activity.
One well-known approach is to allow customers to register with vendors
under pseudonyms, typically one for each vendor [Chaum 1981]. Customers
maintain anonymity by conducting transactions using anonymous elec-
tronic cash (e-cash). But vendors are able to protect their interests by
maintaining a profile on each anonymous customer.

In this paper we present, effectively, the opposite solution to this prob-
lem. Customers may be known to vendors, but the customers’ behavior is
untraceable. This appears infeasible. If transactions cannot be linked to
customers, what is to keep customers from abusing the service? For
example, if someone fails to return a rented video, the video rental
company would like, at minimum, to be sure that this person will not rent
any more videos. But the company cannot do this if it cannot determine
who the renter is.1 We present a protocol that makes transactions unlink-
able, but also protects vendors from abuse.

For the near future at least, a large part of the market on the Internet
and in other electronic venues will rely on credit card-based models (such
as simply sending credit card numbers over SSL or SET [SET 1999]).
Applications of our protocol that require payment do not depend on the
payment mechanisms. So our protocol can be easily applied now, but is
equally amenable to e-cash. Even in an environment in which pseudonyms
and anonymous e-cash are generally available, vendor profiles of customers
(or their pseudonyms) might be undesirable because protecting the custom-
er’s anonymity can fail at a single point. If the vendor is ever able to link a
pseudonym to a customer, the entire profile immediately becomes linked to
that customer. In our solution, if a customer is ever linked to a transaction,
only his or her link to the one transaction is disclosed. This is somewhat
analogous to the property of perfect forward secrecy in key establishment
protocols [Gunther 1990]. However, no underlying system appears immune
to the service correlating application data. (In other words, the transaction
payload might provide identifying information irrespective of the transac-
tion protocol or channel anonymity; see the discussion following assump-
tion 1 in Section 2.1.1.) Thus, security at the higher-level application
should also be evaluated. At the same time, our protocol makes sharing
account access more difficult than sharing ordinary account passwords. So

1In a pseudonym-based scheme, such a customer could try to open an account under a new
pseudonym, but there are mechanisms that make this difficult [Chaum 1985]. Thus the
interests of the vendor can be protected.

Unlinkable Serial Transactions: Protocols and Applications • 355

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

our approach affords better protection to both customers and vendors than
existing schemes do.

In a nutshell, our approach works as follows: After registering with a
vendor, a customer has a single-use token that authenticates the customer
as an authorized user of the service. Using widely implemented crypto-
graphic techniques, the vendor can activate the token without being able to
recognize it when the customer uses it for authentication. On each use of
the service, the customer receives a new token. The contribution of this
work is not so much in setting out novel cryptographic mechanisms as it is
the description of a new secure system problem area, a rigorous statement
of the requirements to solve the problem, and the presentation of a system
that meets the requirements, together with proof that it does so. Our basic
protocol structure and recovery protocol have a novel design to protect
against protocol termination attacks, which can, for instance, defraud the
merchant by receiving goods without paying for them.

On what applications could our approach be used? Consider a subscrip-
tion service for an online newspaper or encyclopedia. Customers have an
interest in keeping their searches private. At the same time, vendors want
to make it difficult for customers to transfer access to the vendor’s service.
This serves as our primary example.

We also consider other applications. One example is pay-per-use service
within a subscription (e.g., Lexis-NexisTM or pay-per-view movies available
to cable TV subscribers). Unlinkable serial transactions can also be used to
provide multivendor packages (e.g., digital coupon books for services from
various vendors) as well as ongoing discounts. They can also be used for
anonymous proof of membership for applications with nothing directly to do
with electronic commerce. Applications include proof of age and proof of
residency. Unlinkable serial transactions can also be used to construct a
simple but effective voter registration protocol.

The paper is organized as follows. In Section 2 we describe requirements
and assumptions. We then present the basic protocol, including registra-
tion, certificate redemption, termination of a subscription, and recovery
from broken connections. In Section 3 we prove that our basic protocol
meets our requirements. In Section 4 we extend the protocol to include
auditing, in order to make detection of unauthorized sharing of subscrip-
tions possible. In Section 5 we describe various applications of unlinkable
serial transactions and associated protocol variants. In Section 6 we
describe related work. Most of the basic mechanisms on which we rely come
from work on e-cash; but we were are able to simplify some of the
mechanisms in this application. We describe them and their relation to our
work. In Section 7 we present concluding remarks.

2. TRANSACTION UNLINKABILITY

In this section we describe protocols that prevent linking a customer’s
transactions to each other. Consequently, transactions also cannot be
linked to the customer. We assume that the customer has subscribed to a

356 • S. G. Stubblebine et al.

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

service with which the customer will conduct these transactions and has
provided adequate identifying and billing information (e.g., credit card
numbers).

The basic protocol allows a customer to sign up for unlimited use of some
subscription service for a period of time, but prevents the service from
determining when the customer has used the service or what he or she has
accessed (subject to assumption 1). At the same time, mechanisms are
provided that make it inconvenient for customers to share their subscrip-
tions with others. Later, in Section 4.3, we describe an enhanced version of
the basic protocol, which also leaves customers vulnerable to detection if
they share their subscriptions despite the inconvenience.

2.1 Threats, Requirements, and Operating Assumptions

After stating our assumptions, we set out the requirements that such
protocols should meet. We describe specific illegitimate use scenarios later,
in Section 2.9. Here we express high-level requirements to protect against
these threats and also express assumptions about the operating environ-
ment. Solutions for countering the threats are presented in subsequent
sections of this paper.

We expect the protocols to be used predominately by vendors wishing to
sell public network access to information (typically resident in databases).
These vendors will need to offer customer anonymity on a transaction
basis.

2.1.1 Operating Environment Assumptions. Customers of the service
will access the servers through standard networking protocols. However,
when customers desire anonymity they access the server using communica-
tions that protect their anonymity. We assume the following:

A1. Anonymity-protected network communications are unlinkable to
prior communications, provided application content does not enable link-
age.

Services that provide channel anonymity, i.e., disassociating the cus-
tomer from the communication channel that carries data between the
customer and server, are described in Section 6.3. No practical mechanisms
for Internet communication provide information-theoretic security against
an adversary able to observe the entire network. (The nature and degree of
anonymity for various services are discussed in Section 6.3.) Also, a
customer’s channel anonymity is obviated if application data sent over the
channel identifies the customer. While one may provide application-layer
filtering of identifying information, if transactions involve running ever
more functionality over connections, there can never be a comprehensive
list of what must be stripped out to prevent identifying customers to the far
end. There is a tradeoff to be made here between anonymity and function-
ality. What the above assumption says is that if there is nothing in the
application data linking one communication session to a previous one, then,
if a (channel) anonymity service is used, the channel anonymity provided is

Unlinkable Serial Transactions: Protocols and Applications • 357

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

assumed to be unbreakable. This is analogous to the usual protocol as-
sumptions that encrypted messages can never be revealed by any direct
cryptanalysis.

If all clients of a protected service collude by “exposing” their transac-
tions, then it is obvious that the remaining transaction is “your” own. Thus
we require the following assumption:

A2. Entities may collude. However, we assume that collusion among
customers is insignificant, in the sense that there will always be a suffi-
cient number of noncolluding customers and associated transactions to
mask legitimate customer activity.

Keys and other numbers that must be unpredictable and unique are
chosen from a large-enough space. Keyed cryptographic operations protect
integrity. What sort of operations this includes is set out in Section 2.2.

A3. We assume that cryptographic keys, nonces, blinding factors, etc.
are adequately chosen randomly from an adequately large space to prevent
random collisions or the disclosure of secrets by cryptanalytic attacks.

A4. We assume that keyed cryptographic operations prevent any unde-
tectable modification of fields to which those operations are applied.
Furthermore, we assume the entity’s inability to forge signatures without
knowledge of the key.

Fresh, random, secret nonces are used to protect duplicate use of certifi-
cates. If accidental nonce collisions occur, off-line appeal may be necessary.
Another assumption is that a message sent from a customer to the vendor
or from the vendor to a customer cannot be indefinitely prevented from
arriving uncorrupted.

A5. We assume that every message is received as sent after a finite
number of attempts to send it.

Whatever the potential in attempting compromise of customer privacy,
the vendor is assumed not to want to cheat paying customers.

A6. Vendors will provide services for which they accept payment.

2.1.2 Fraud. Protection against fraud is particularly important due to
seemingly inherent conflicts with transaction anonymity. Despite transac-
tion anonymity, vendors should be assured that they are not providing
uncontracted services. We address two types of fraud. The first is sharing a
subscription. The second is fraudulently obtaining new subscriptions or
using subscriptions that were to be invalidated.

High-volume fraud, wherein an attacker sets up as an effective subscrip-
tion subcontractor or fraudulently obtains large numbers of subscriptions
in an organized fashion, is of primary concern. So our first requirement is

R1. Eliminate high-volume fraud.

358 • S. G. Stubblebine et al.

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

Even if high-volume fraud is eliminated, there is still the possibility that
an individual customer will share subscriptions or obtain additional sub-
scriptions. To some extent, sharing is inevitable and permissible. For
example, we expect an individual to share subscriptions among family
members; but we would like to minimize its abuse. Also, individuals will in
fact lose the certificates for their subscriptions from time to time, and may
even pay without their subscription properly initializing. Subscriptions
should be made robust against these possibilities, e.g., by issuing sufficient
initial certificates with a subscription and/or by correcting subscriptions for
such individuals. However, we would like to minimize abuse here as well.
Thus, we require:

R2. Detect and reduce activity related to low-volume fraud.

The protocol should protect against unauthorized payment such as the
theft of payment and refunds by third parties.

R3. Payments (including refunds if applicable) cannot be stolen.

2.1.3 Customer Privacy. There will be incentives for vendors to profile
customers to obtain marketing information. Furthermore, outsiders and
other customers may wish to obtain information for industrial espionage.
Specifically, it should be difficult for a vendor or others to link the customer
to any particular requested transaction. It should also be difficult for the
vendor to link any one transaction request with any other (building a
profile that might ultimately be tied to a customer is difficult.)

R4. Prevent the building of customer profiles (including pseudonymous
profiles) by vendors, other customers, and outsiders.

R5. In a transaction, protect the identity of the customer from vendors,
other customers, and outsiders.

2.1.4 Service Guarantee. Vendors should not be tricked into servicing
invalid customers at a valid customer’s expense. (This requirement depends
on assumption 6, above.)

R6. Customers cannot be denied services they have contracted for.

As in most systems, we do not attempt to protect against denial of service
attacks, such as flooding online services with service requests.

2.2 The Basic Unlinkable Serial Protocol

The basic protocol has two phases, registration and certificate redemption,
optionally followed by a termination phase. The goal of registration is to
issue credentials to a new customer. The new customer C presents suffi-
cient identifying and payment information to the vendor, V. The vendor
returns a single blinded certificate, which authorizes the customer to later
execute a single transaction with that service.

In the certificate-redemption phase, the customer spends a certificate
and executes a transaction. At the end of the certificate-redemption phase,

Unlinkable Serial Transactions: Protocols and Applications • 359

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

the vendor issues the customer another blinded certificate. The vendor
cannot link the new certificate to the spent one, so the vendor cannot use it
to link transactions to one another. We assume that the customer has an
associated identifier C for each account, whether or not the customer’s
identity is actually known by the vendor. (The customer may in fact have
different identifiers for different accounts.)

We now discuss our notation, summarized in Table I. We use square
braces to indicate message authentication. Thus, @X#K may refer to data X
signed with key K or a keyed hash of X using K.

Curly braces represent both message confidentiality and integrity. $X%K

refers to X encrypted with key K and, for our purposes, it refers to
mechanisms that also provide integrity within the scope indicated. When
there is no danger of confusion, we write $X%A to indicate that X is
encrypted for A, typically using a public key. Similarly, we sometimes write
@X#A to indicate that X is integrity-protected by A, typically using a
signature key. It should be clear from the context whether or not A is the
only identifier for a principal. For example, V and S below can both be
associated with a single vendor in two different roles.

Blinding is a cryptographic technique used when we want entities to sign
messages without seeing their contents [Chaum 1983]. The first step is for
the originator to compute a blinded message using a blinding factor. We
use over-lining to indicate the application of a blinding factor to a message,
e.g., X refers to the result of blinding X. The next step involves signing the
blinded document by the signing party, e.g., @X#K. Finally, the originator
can remove the blinding factor, leaving the original document signed by the
signer, e.g., @X#K. Blinding involves the use of a secret such that anyone
who does not know the secret blinding factor cannot associate X with either
X or any @X#A [Menezes et al. 1997]. Note that our mechanism integrity
assumption (4) intends for the blind signature to be secure from “one-more”
forgery attacks [Pointcheval and Stern 1996]. Such forgery enables the
originator to forgo more signed objects then it submitted for signing.
Encryption, signing, and blinding are the “keyed cryptographic operations”
referred to in Section 2.1.

Finally, h~X! refers to a hash of X. This means that it is easy to compute
h~X! given X, but hard to compute X given h~X!. It is also hard to find any
pair X and Y (X Þ Y) s.t. h~X! 5 h~Y!.

Table I. Notation

@XK# : Message integrity of X using K.
$X%K : Message integrity and confidentiality of X using K.
X : Blinding of X.
h~X! : Hash of X.

360 • S. G. Stubblebine et al.

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

2.3 Registration

Message 1. C 3 V : $Payment, DCV%V, @Request for certificate of
type S, C, H~N1!#KCV.

Message 2. V 3 C : @h~N1!#S.

The encryption indicated by V uses a public key that is only used to
encrypt for the vendor and only for the UST (Unlinkable Serial Transac-
tion) protocols we describe. The signature indicated by S in message 2 uses
the vendor’s signature key for service S and is only used to sign blinded
hashes. We call this signature key the service key. A service key is only
used in transactions related to the service. A signed hash is a certificate.
The service key is also subject to periodic renewal. The public components
of service keys have published expiration times. All certificates should be
used or exchanged by that time.2 We see that there is no need to verify the
structure of the blinded hashed nonce because the service key used to sign
the message is the important factor, not the message content. If the
customer substitutes something inappropriate, the result can only be an
invalid certificate. If message 1 is not acceptable, e.g., if the payment in
message 1 is inadequate for the requested service or is a credit card
payment that is not authorized by the bank, then the protocol terminates,
and the problem is communicated from the vendor to the prospective cus-
tomer out-of-band.

The vendor must remember this sequence of messages in case message 2
is not received by the customer (see Section 2.7.) For this registration
protocol, the service should consider message 2 to have been received after
some period of time. For (space) efficiency, an acknowledgment message
may be sent to the vendor:

Message 3. C 3 V : @Ack#KCV

If message 3 is received, the vendor can be sure that the customer
received message 2, and does not need to remember the sequence of
messages for recovery purposes. However, the vendor may wish to keep a
record of registration for other purposes.

A customer may wish to make use of his or her subscription from
multiple machines, e.g., a base machine at home or office and a laptop
machine when traveling. It may be considered too much of an inconve-
nience to require customers to transport the current unspent certificate for
each subscription to the next likely platform. The vendor may therefore
allow the customer to obtain a number of initial certificates, possibly at no
additional fee, or for a nominal charge. Similarly, customers might be
allowed to add an initial certificate during their subscription if beginning
the use of a new machine. Another possibility is that customers might store

2An exchange consists of a certificate-redemption transaction wherein the vendor renews the
customer’s certificate under the new service key.

Unlinkable Serial Transactions: Protocols and Applications • 361

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

the certificate on their Web pages at an ISP (Internet service provider) and
proxy requests through that page. This allows customers to share access to
their accounts by sharing access to the Web pages, and also implies that
customers trust the ISP with some profile information. The implications of
such centralized proxy access are discussed in more detail in Section 2.9.
Vendors will need to decide which policy best meets their needs.

KCV is used to link protocol messages to one another. This becomes even
more important when certificates are redeemed for transactions. We dis-
cuss further assumptions and requirements regarding this linking after
presenting the certificate-redemption protocol.

2.4 Certificate Redemption

When customers want to make use of the service, they conduct a certificate-
redemption protocol with V. Certificate redemption consists of certificate
spending, transaction execution, and certificate renewal.

Message 1. C 3 V : $@h~Ni!#S, Ni, KCV%V,

@Request for transaction of type S, h~Ni11!#KCV

Message 2. V 3 C : @Approved#KCV ~OR @Not approved#KCV!

Message 3. C 7 V : @Transaction#KCV

Message 4. V 3 C : @h~Ni11!#S

The transaction, message 3, is only done if message 2 is ~@Approved#KCV!.
The other possibility is discussed in the next section. To prevent the
customer from beginning a new certificate-redemption protocol before the
current one completes, we delay the release of the new certificate @h~Ni11!#S

until the transaction ends. If the new certificate is released before the
transaction, customers could run their own subscription servers that would
proxy transactions for their customers. (This choice may force a certain
structure on service implementations that allow concurrent transactions
for legitimate customers; see Section 2.9.)

KCV is a key used to protect the integrity of the session; it should be
unique (chosen by C) for each session. If KCV is compromised and then used
in a later session, an attacker could create his or her own second field in
the first message. By so doing, the attacker could hijack the subscription.
Note that the confidentiality of these messages is not required to support
this protocol; if confidentiality is required for other reasons, KCV may be
used for confidentiality as well.

Thus the uniqueness of KCV is important to honest customers. But
session integrity is important to vendors as well. Vendors would like to be
sure that transaction queries are only processed in connection with a
legitimate certificate renewal. Unfortunately, KCV may not by itself be
enough to guarantee integrity of a protocol session. One or more customers
might intentionally reuse the same session key and share it with others.

362 • S. G. Stubblebine et al.

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

Anyone who has this key could then submit queries. As long as such a
query is submitted during an active legitimate session for which it is the
session key, there is nothing in the protocol that distinguishes this query
from legitimate ones. This allows for considerable sharing of subscriptions
by effectively bypassing certificate spending. Other aspects of protocol
implementation might prevent this. But, to be explicit, we assume that
uses of KCV are somehow rendered serial within a protocol run. For
example, KCV might be used in the protocol in a stream cipher. Alterna-
tively, KCV might be used as a secret nonce that is hashed with plaintext.
The plaintext and hash are sent in each message. Each time a message is
sent, the nonce could be incremented. (We make the same assumption for
all protocols that use a session key, in order to protect the integrity of the
session mentioned in this paper.) If something is done to make each use of
KCV in a protocol session unique and tied to previous uses within that run,
then sharing subscriptions by this method becomes at least as inconvenient
as sharing subscriptions by passing the unspent certificate around. (Fur-
thermore, requiring at most a single TCP connection associated with the
use of KCV may also make sharing impractical and alert authorities to
possible sharing. Sharing a single TCP connection among multiple entities
is known to be very difficult, due to the need to maintain send and receive
sequence numbers and to multiplex the different addresses for clients.)

As in the registration protocol, the vendor must remember the messages
sent in this protocol (except for the transaction messages) in case the
customer never received the new (blinded) certificate. For efficiency, an
acknowledgment message may be added:

Message 5. C 3 V : @Ack#KCV

2.5 Not Approved

If the response in message 2 is Not approved, then the protocol terminates.
This response can only be authenticated with KCV if the response is the
same upon replay of message 1. So the response to a request for service is
@Not approved#KCV only if the nonce does not match the certificate. Other
Not approved errors, including, e.g., double spending, are reported back
unencrypted (out-of-band). This helps to ensure that the protocol is fail-
stop (cf., Section 3.1).

If the customer is a valid subscriber who never received an initial
certificate for the current key, it should be reflected in the vendor’s records.
The customer can then get an initial certificate in the usual manner.
Offline appeal will be necessary for customers who feel they have been
refused a legitimate transaction request. We have designed these protocols
under the assumption that appeals will be automatically decided in favor of
the customer as long as the customer does not appeal too many times.

2.6 Terminating a Subscription

Customer-initiated termination of a subscription is a variant of certificate
redemption. While termination requires customers to turn in unspent

Unlinkable Serial Transactions: Protocols and Applications • 363

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

certificates, they do not get transactions or new certificates; however,
customers may get refunds for any unused portions of their subscriptions.

Message 1.
C 3 V : $@h~Ni!#S, Ni, KCV%V,

@Request for transaction of type ~S Termination!, C#KCV

.

Message 2. V 3 C : $Refund%KCV ~OR @Not approved#KCV!

Whether or not refunds are available is a question of policy, decided by
the vendor. They may be prorated on the basis of the vendor’s policy for
early termination. Should the subscription include multiple chains of
certificates (e.g., for a workstation and a laptop), it may be required that all
chains be returned to trigger a refund or the refund might be prorated
accordingly. The refund may take any form, e.g., a credit to a credit-card
account, e-cash, or even a mailed check.

In message 2, we encrypt using KCV, since we do not require that
customers possess private keys. As in registration, it may be required that
customers authenticate themselves in some way in order to receive a
refund. We do not consider this authentication part of our basic protocol
structure. Although it is possible that such authentication could be inte-
grated into our protocol, we do not discuss it.

As before, for efficiency, an acknowledgment message may be added:

Message 3. C 3 V : @Ack#KCV

2.7 Recovering from Broken Connections

Protocols that break before the vendor receives an acknowledgment must
be replayed in their entirety (except for the actual transaction, which is
always skipped) with the same session key, nonce, and blinding factor. The
protocols are designed not to release any new information when replayed.

Broken protocols are considered automatically acknowledged after some
period of time has passed (i.e., the customer has that much time to recover
from a broken connection). After that period of time, the protocols can no
longer be replayed. This is not crucial for the redemption protocol, but is
crucial for the registration protocol. After that period of time has passed,
the subscription may be charged

We consider connection breaks that occur from the beginning to the end
of the protocol. If a connection breaks after a new certificate has been
acknowledged (message 5 in the Certificate Redemption protocol), the
customer can simply initiate a new transaction with the new certificate. If
a connection breaks after C receives message 4 but before V receives
message 5, the customer can again simply initiate a new transaction.

Up to this point in the protocol, the customer will not yet have received a
new certificate. So recovering from any connection breaks that occur prior

364 • S. G. Stubblebine et al.

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

to this point in the protocol involves replaying the protocol. Vendors should
keep a record of each protocol run until they receive the acknowledgment in
message 5 (or until sufficient time has elapsed). Upon replay, the customer
presents the same sequence of messages. The vendor will identify the
presented certificate as spent and consult its recovery database. If the
protocol is recoverable (i.e., has not yet been acknowledged), the vendor
returns the stored response.

Notice that customers need never identify themselves when a broken
connection occurs. Hence customers need not worry about being associated
with any given transaction.

Disk crash and other media failures affect our system as well. It is
unrealistic and unreasonable to expect customers to backup copies of
subscription information every time they redeem a certificate. (It is often
unrealistic to expect customers to make backups at all.) Therefore, custom-
ers must be allowed to reinitialize a subscription after a disk crash. How
often individuals will be allowed to reinitialize over the course of a
subscription is a policy decision for individual vendors. As in other appeals,
customers would typically be expected to identify themselves. Another
option is to provide customers with (distinct) backup initial certificates at
registration, just as they may obtain initial certificates for multiple ma-
chines. This allows customers to recover from a disk crash without reregis-
tering (assuming they have kept backups separately); however, it does
provide additional subscription chains for the cost of one subscription.
Finally, customers might proxy their requests through an online location
that manages their certificates as well. As mentioned above, this allows
customers to easily access their subscriptions from multiple platforms in
multiple locations. It also makes it less likely that customers will lose
certificates because one of their computers crashed. Unfortunately it also
makes it easier, if no less risky, to share subscriptions. We discuss this
further in Section 2.9.

2.8 Service Key Management

For unlinkable protocols to work, it is important that service keys not be
“closely“ associated with customers. For example, we do not want the
vendor to be able to uniquely associate a service key with each customer,
which would enable the vendor to associate transactions with customers.

2.8.1 Committing to Service Keys. A straightforward technique to over-
come this potential vulnerability requires the vendor to publicly commit to
all public authorization keys. This can be achieved by publishing informa-
tion at regular intervals at a unique location well known to all potential
customers of the service. An example publication format for each a service
consists of the service type, expiration time, and signature confirmation
key for signatures associated with the service.

2.8.2 Subscription Termination. Other than as a general security pre-
caution, the primary reason to change service keys is to facilitate expira-

Unlinkable Serial Transactions: Protocols and Applications • 365

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

tion of subscriptions. When keys expire, customers obtain new certificates
just as they did when signing up for a service initially. Service expiration
can be structured in several different ways, each with advantages and
disadvantages. We present some of these and briefly mention some of the
tradeoffs. Which is most acceptable will depend on particular aspects of
application and context. For the purposes of discussion, let us assume that
the standard period of subscription is one year divided into months.

2.8.3 Subscription Expiration. One option is to have annualized keys
that start each month; that is, twelve valid service keys for the same
service at all times. This is convenient for the customer and similar to
existing subscription mechanisms; however, it partitions those using a
service into twelve groups, reducing the anonymity of customers accord-
ingly. This may or may not be a problem. If subscriptions are annualized to
quarters, it reduces the threat to anonymity; but this might still be
unacceptable. It also reduces customer flexibility as to when subscriptions
can begin.

An alternative is to have monthly keys that are good for all customers.
Customers obtain twelve seed certificates when they subscribe, one for each
month of the succeeding year. This does not reduce anonymity as the last
option does. On the other hand, it requires that customers keep track of
multiple certificates and requires issuing certificates well in advance of
their period of eligibility. With monthly keys it is also that much easier to
share a subscription, at least in monthly segments. Thus, the deterrent of
inconvenience is somewhat reduced. Since a lost certificate now only means
the loss of at most one month of service, the threat of subscription loss from
sharing is also reduced. The deterrence against sharing provided by audit-
ing (cf., Section 4) is similarly diminished.

Another option is to have all subscriptions end in the same month. Those
subscribing at other than the beginning of the fiscal year will pay a
prorated amount for their subscriptions. This avoids reductions in anonym-
ity associated with monthly annualized keys. It also avoids the reduced
deterrence to cheating associated with monthly keys. But it reduces cus-
tomer flexibility in choosing the ending of the subscription. Another disad-
vantage is that subscription renewal is now all concentrated at one point in
the year, creating an extremely unbalanced workload for the system that
handles sign up and renewal. This would probably remain true even if
customers were allowed to renew in advance. It could be diminished by
splitting the year in half or even further. This creates a reduction in
partitioning anonymity already mentioned.

2.8.4 Early Termination of a Subscription. Terminating a subscription
early requires proving that the user is a particular customer and is
spending a valid certificate. The customer will not get a new certificate, so
there is no way for the customer to continue using the service. Note that
early termination can even be customized, for example, so that it is
available only to those customers who have already subscribed for at least
a year. (Recall that customers reveal their identities or pseudonyms when

366 • S. G. Stubblebine et al.

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

they terminate early.) Prorating refunds for terminated subscriptions re-
moves one of the disadvantages of the third option for subscription expira-
tion described above.

We have been describing customer termination of a subscription. Vendor
termination of a particular customer or group is far more difficult (it may
also be less important). In our current approach the only way to terminate
a customer is to change the service key(s) for the remainder of the
subscription and require everyone else to reinitialize their certificates with
the new key. This creates tremendous expense and inconvenience, equiva-
lent to what would be necessary if a service key were compromised.

2.9 Discussion: Subscription Sharing

In the protocols presented thus far, deterrence against sharing subscrip-
tions has been based primarily on the inconvenience of sharing. This is
akin to sharing a (hardcopy) newspaper or magazine subscription. There is
nothing to prevent someone from sharing his or her newspaper subscription
with neighbors. But the majority of subscribers prefer the convenience of
having their own subscriptions to sharing with others, at least beyond their
own households.

The analogy to the inconvenience of sharing a hardcopy subscription
should not be taken too literally. Sharing a UST subscription is both more
and less convenient than sharing a hardcopy newspaper. Unlike a hardcopy
newspaper, the typical UST subscription need only be held long enough to
perform the desired transaction, e.g., download a query response. The
subscription can be passed on to another user, while the downloaded
material is read or otherwise processed by the user. In this sense the
inconvenience of sharing a UST subscription is not nearly as great as that
of sharing a hardcopy newspaper. On the other hand, the inconvenience
could potentially be higher: in UST, if the borrower fails to make the new
certificate and nonce available to the subscriber, the subscriber has lost the
subscription; but when a borrower fails to return a newspaper to a
subscriber, the subscriber still gets the paper the next day. Of course, there
is no official newspaper policy against sharing, and some sharing does
occur. (Academic publishers typically differentiate between institutional
and individual subscribers.) Unlike hardcopy newspapers, we assume that
arbitrary sharing (e.g., beyond members of one’s household) is usually
against the stated policy.

It seems doubtful that a practical solution exists to fully protect vendors
against sharing, given our goal of unlinkable transactions. (If transactions
were linkable, one could detect widespread sharing through overuse of a
subscription.) For example, subscriptions may be shared if a customer runs
a subscription proxy server. This possibility is probably unavoidable and
has many consequences. For example, moving the certificate-renewal phase
of certificate redemption to before the transaction-execution phase has an
advantage for potentially broken connections. First, it makes the need for
recovery less likely because the customer will already have a valid certifi-

Unlinkable Serial Transactions: Protocols and Applications • 367

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

cate if the connection breaks during transaction execution. Thus the
customer could simply initiate a new transaction. Second, the recovery
itself would be simpler, since it need only be associated with certificate
spending and renewal. There is no need to account for the transaction that
occurred before the connection broke. Third, it allows legitimate customers
to perform concurrent transactions. But there is an important disadvantage
to such a protocol variant: it allows a cheating customer to run an even
more fruitful subscription proxy server. Specifically, if the redemption
protocol is altered, a customer running a proxy service could set up new
transactions before active transactions had even completed. In the current
protocol, only one transaction execution is possible at a time per subscrip-
tion. In the variant, indefinitely many transactions can be run in parallel.
If this is not considered a serious threat, then its advantages may make it
an attractive variant. The basic protocol is designed to maximize inconve-
nience of subscription sharing by proxying transaction requests.

On the level of a small group of users, say ten or so, it would be easy
enough to set up proxy-based subscription sharing; but it seems unlikely
that the majority of subscribers have the technical expertise and motiva-
tion to do so. This is a large advance over simple password protection:
virtually every subscriber is capable of sharing a password with arbitrarily
many others, who can furthermore share that password with still others.
Sharing via proxy service on a larger scale, i.e., running a pirate subscrip-
tion service, has the usual attendant complexity of running a business.
Such a business has the overhead and complexity of marketing, advertis-
ing, and maintaining service reliability. Perhaps more importantly, it has
the potential disadvantage of being a focus for legal action. We will
presently introduce further impediments to the proxy pirate.

We have already discussed the possibility of another form of proxying,
where certificate management is proxied as well as transactions. We have
already mentioned the advantages of mobility, platform-independence, and
robustness against hardware failure that such proxying might enable.
However, it also enables sharing of subscriptions in a much more conve-
nient form. A lending customer need only share access to his proxy,
presumably by means of a password. This effectively removes the inconve-
nience of sharing that was present for sharing transactions only. However,
it is replaced with the risk of subscription loss. Borrowers of a subscription
could steal it by stealing the current valid certificate. The lender could
require a deposit to protect against such loss or charge enough to cover
losses. Requiring a deposit or charging for fraudulent activity has histori-
cally been a key element in detecting and limiting fraud. More likely, the
proxy could be so configured as to make theft of certificates difficult (e.g.,
not making the new certificate known to the customer). In Section 4.3 we
consider an expanded protocol that increases the likelihood of a vendor
detecting such sharing, should such measures be thought necessary.

368 • S. G. Stubblebine et al.

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

3. EVALUATION

In this section we argue that our basic protocol meets all of the require-
ments mentioned in Section 2.1. First, we prove some of the protocol’s
functional properties. We then argue that these properties guarantee that
the protocol satisfies the requirements. Unlike normal concurrent pro-
grams, we must show that these functional properties are satisfied in the
face of a hostile environment, including both active and passive attacks.
Therefore, to reduce the complexity of the correctness proof, we partition
the proof into three stages:

—Prove that the protocols can be reasoned about as sequential programs by
proving that they are fail-stop [Gong and Syverson 1998]. We justify this
simplification in the next section.

—Prove that passive attacks do not reveal secrets. If secrets are revealed,
subscriptions and money (credit) may be stolen, or services may be
abused.

—Prove the functional safety properties as if the protocols were sequential
programs [Chandy and Misra 1989].

3.1 Fail-Stop

Fail-stop protocols block when they are disrupted: they are immune to
active attacks. So reasoning about fail-stop protocols is equivalent to
reasoning about sequential programs.

To prove that our protocol is fail-stop, we must demonstrate that our
protocols halt if there is an active attack. Our main observation is that the
integrity of a protocol run is maintained for four reasons: (1) fields in a
message are protected by the cryptographic operations (by assumption A4);
(2) fields in a message are linked by a fresh shared key; (3) messages in a
protocol are linked by the (changing) fresh shared key, KCV; and (4) changes
to fields in a protocol are immediately detectable, and changes cause the
protocol to block. Thus, active attacks are not possible, and we need only
consider passive attempts to compromise confidentiality.

What guarantees that the customer chooses KCV fresh for each protocol
run? For example, the customer may have an incentive to use the same KCV

for multiple runs to facilitate sharing. As discussed in Section 2.4, other
aspects of the protocol implementation are likely to make sharing KCV

impractical. These aspects focus on requiring clients to maintain a local
state associated with its use. However, as discussed below, the benefit is
minimal and the risk of losing control of the subscription is severe.

So we assume that the customer chooses the key fresh for each protocol
run, and that the protocol is therefore fail-stop.3

3If the customer reuses the same KCV for several protocol runs, the protocol is not fail-stop.
Based on this, one possible active attack is to substitute the corresponding field from a
previous run for the second field in message 1 of the current certificate-redemption protocol

Unlinkable Serial Transactions: Protocols and Applications • 369

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

3.2 Passive Attacks

We distinguish passive attacks by outsiders from passive attacks by the
vendor. All secrets in all basic UST protocols are hidden from outsiders by
encryption and/or blinding and hashing. For example, KCV is protected by
the vendor’s key. In the certificate-redemption protocol, the new nonce is
both hashed and blinded. Secrets are protected from the vendor by blind-
ing. For example, the hashed nonce that will be signed by the vendor is
hidden from him by blinding. Since secrets are hidden by these mecha-
nisms, passive attacks will not reveal any secret information.

3.3 Safety

Our safety properties are proved in the usual way, by observing that they
are preserved across protocol steps. In all cases, we observed that we do not
need to worry about interactions between two protocol executions because
modifications to state variables in any given execution are independent of
modifications to the variables in any other execution. Therefore, individual
protocol executions can be treated as atomic. In fact, we see that the first
two safety properties do not hold during a protocol execution, but only at
boundaries (before or after an execution). In contrast, the third property is
maintained during protocol execution. Indeed, it is only interesting if the
protocol is not viewed as atomic because it considers state information that
only makes sense during protocol execution.

3.3.1 Definitions. A subscription chain c is any sequence of certificates
^c1, . . . , cn&. We often simply call a subscription chain a chain.

An annotated chain is a chain, together with an annotation for each
element of the chain, ^~c1, x1!, . . . , ~cn, xn!&.

The possible annotations are unspent u, active a, and spent s. The
annotation A~c! of chain c is the sequence of annotations of the elements of
c, ^x1, . . . , xn&, and A~c! i 5 xi.

A chain c is well-formed (WFc) if it is annotated, and all elements except
the last are spent. That is, A~c! i 5 s for 1 # i , n, and A~c!n [$u, a, s%
where n is the length of c.

run, using the same KCV. At the end of the redemption protocol’s run, the customer is issued
an already spent certificate and must appeal to restart the subscription.
That the protocol can proceed in the face of this attack shows that it is not fail-stop if KCV is
used in more than one protocol run. Still, this attack does not result in the attacker seeing any
messages that he could not have seen without the attack. Thus the protocol appears to be
fail-safe [Gong and Syverson 1998]. For example, all the messages before message 4 are the
same with or without the attack, and message 4 should have been sent in the previous protocol
run, from which the attacker took the second field of message 1. Nonetheless, the protocol is
not fail-safe. An attacker could substitute an Approved in message 2 from an earlier run that
used KCV for a Not approved message in a later run. The customer then sends a new
transaction request under KCV that would not have been sent without the attack. (That the
customer must have intended to send the request when he began the protocol run does not
change the fact that the protocol is not fail-safe.) We examine below the affect of these attacks
with respect to functional invariants.

370 • S. G. Stubblebine et al.

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

C is a bag (multiset) of chains.
prefix~c! is the set of all prefixes of c, i.e., prefix~c! 5 $x : ?t~x;t 5 c!%.

(We denote concatenation by “;”.) Prefix~C! is the bag of all prefixes of all
chains in C, i.e., Prefix~C! 5]

c[C
prefix~c!.] represents a union of bags,

i.e,]
i[I

Xi represents the bag of all members of any Xi, where either I or
any of the Xi’s may be bags or merely sets. # represents the subbag
relation in an obviously analogous manner.

3.3.2 Safety Properties. Chains begin at protocol registration (except for
replacement of lost certificates, etc.). They are extended during certificate
redemption and reach a steady state upon termination (or possibly loss of
certificate, etc.) The chain annotations map to the protocol steps as follows.
A chain begins or grows when the vendor sends a certificate to the
customer. If the custom has not spent a certificate in the chain previously,
then this is the beginning. At this point the certificate is unspent. The
certificate becomes active when the customer sends it to the vendor during
the redemption or termination protocol. It becomes spent when the vendor
sends the customer a new certificate (or a refund message in the termina-
tion protocol). One consequence of this mapping between the protocols and
the above definitions is the following invariant.

Fact. I1. Subscription chains are persistent.
STABLE: K # Prefix~C!. This can also be written as
@K@K # Prefix~C!$Protocol Run%K # Prefix~C!#

The remainder of the invariants that we present are used to argue that
the protocol meets one or another of the requirements set out in Section
2.1.

Fact. I2. Number of payments 5 Number of chains is invariant.
INV: ?P? 5 ?C?

By assumption A6, if vendors accept payment from customers for a
service, then they will provide the customers with new certificates for that
service. And, by assumption 5, all legitimate messages are eventually
received. So there are at least as many chains as there are payments. From
the protocol description and the fail-stop property, we cannot get more than
one certificate from a run of a protocol session of the registration or
redemption protocol. The recovery protocol of the redemption protocol’s
incomplete runs is fail-safe by definition: it only returns previously sent
messages (cf., Section 2.7). Recovering from an incomplete registration is
similarly fail-safe. So replays of the registration protocol are idempotent.
Thus, a registration protocol run spawns exactly one chain, and a redemp-
tion protocol can only extend a chain. The termination protocol does not
return a certificate at all. All chains require a certificate as an initial
element. Since the termination protocol doesn’t provide a certificate, it is
not possible to spawn a new chain.

Unlinkable Serial Transactions: Protocols and Applications • 371

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

This invariant as stated is appropriate when one initial certificate is
issued for each subscription. As we discussed, there are reasons why one
might want to issue some number of initial certificates n at registration or
allow issuing up to n new initial certificates during the course of a
subscription. In these cases the invariant becomes n?P? 5 ?C? or ?P? #

?C? # n?P?, respectively. The proof, however, is roughly the same.

Fact. I3. Each subscription chain has at most one active certificate at
any time.

INV: @c [C@?A~c!Ÿa? # 1# (Ÿ represents restriction).

Invariant I3 is a consequence of the following invariant:

Fact. I4. Well-formed chain invariant:
INV: @c [C.WFc

The well-formed chain invariant is stronger than we need (or possibly
even want). What we want is I3. The stronger well-formed chain invariant
implies I3, but it precludes, for example, implementations that issue new
certificates before the transaction, which would simplify recovery from
broken connections. But this is a variant on the basic protocol. The
well-formed chain invariant is a consequence of the basic protocol descrip-
tion.

Note the following property, which describes terminated subscriptions:

Fact. I5. Terminated subscription chains never grow.
STABLE: @c [C@A~c! 5 s ?c?#

By property I4, all but the last element of any chain is spent. The
termination protocol spends the last element in a chain without extending
the chain (i.e., issuing a new certificate). Once termination has taken place,
all the elements in the chain are spent. The only way for an existing chain
to obtain a new element is through the redemption protocol (since the
registration protocol can only start new chains). To initiate a session of the
redemption protocol, an unspent certificate is needed. So a terminated
subscription chain cannot grow and consists entirely of spent certificates.

The above arguments are made under the assumption that the customer
chooses KCV fresh for each protocol run (making the protocol fail-stop). If
we do not assume that the customer chooses KCV fresh for each protocol
run, we can still demonstrate that the safety properties are maintained.
There are two cases.

(1) The repeated use of KCV could allow the integrity of message 1 to be
violated, as in the first attack in Section 3.1. However, the attacked
protocol run could also have been run under the assumption that the
customer does choose KCV fresh each time. For example, just as an
attacker could substitute a second field of message 1 from a previous
run for the second field in a current run, the customer could repeat that
earlier blinded hash himself, within the second field of a current run.

372 • S. G. Stubblebine et al.

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

Since this makes the protocol run identical to a run of the fail-stop
protocol, the safety properties are maintained.

(2) Repeated use of KCV could allow the integrity of some other message to
be violated. But, except for message 1, all messages of all protocols
consist of a single field. So our assumption about cryptographic field
integrity amounts to an assumption about message integrity. We need
therefore only consider the substitution of whole messages in active
attacks. But these have no affect on the safety properties given above.
For example, the attacker could substitute a previous Approved mes-
sage for a Not approved message. In this case, the customer initiates
the transaction even though the vendor expects no further messages.
But this does not affect any of the invariant or stable properties that we
show.

3.4 Fraud

Recall that there are two categories of fraud: subscription sharing and the
use of illegitimate subscriptions.

Subscriptions can be shared in two ways: (1) sharing within a protocol
session, and (2) sharing the certificates themselves. Illegitimate subscrip-
tions are either (1) new, fraudulently obtained subscriptions or (2) sub-
scriptions that were meant to be rendered invalid but are still usable.
There are several ways to fraudulently obtain new subscriptions (a) claim
you registered and never received a new certificate, (b) obtain more
certificate chains than were paid for due to a protocol failure in the
redemption or registration protocol, and (c) claim you have lost your chain
and require a new seed certificate.

We wish to eliminate all activity related to high-volume fraud (i.e., R1).
Sharing within a protocol session cannot be done at high volume because
there are a fixed number of transaction requests allowed per redemption.
Sharing certificates cannot be done at high volume because we show that
there is at most one active certificate at any time per subscription chain
(I3). It is still possible for an attacker to set up an unsanctioned subcon-
tracted subscription service; however, the attacker is unable to do high-
volume sharing within a protocol session, nor can he use a single subscrip-
tion in a parallel fashion. Further, natural delay in processing transaction
requests precludes obtaining large numbers of transactions in a serial
fashion because the certificate sharer won’t be able to obtain a new
certificate to facilitate new transaction requests until previous transaction
requests have been serviced. While by these arguments a customer cannot
commit high-volume fraud, he can nonetheless still set himself up as a
centralized service, albeit at a less than high volume. Should this threat be
of concern, other countermeasures (e.g. an audit) can be added to the
protocol (discussed in the next section}.

We now address obtaining new subscriptions illegitimately. By property
I2, it is impossible to obtain a new subscription without payment. The only
possible exception is to obtain a new subscription via off-line appeal (cases

Unlinkable Serial Transactions: Protocols and Applications • 373

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

(a) and (c) above). A customer who does this repeatedly risks detection via
the high number of appeals associated with one account. But the protocol
doesn’t inherently authenticate customers. There is nothing to prevent an
attacker from finding a list of customers and claiming to have registered
under any one of them. In this way an attacker could obtain a large number
of new illegitimate subscription chains without attracting attention. How-
ever, to prevent high-volume fraud, we could require off-line authentication
or use of the audit mechanisms discussed in the next section.4

The only source for high-volume fraud yet to be discussed is the contin-
ued use of subscriptions intended for invalidation. By property I5, termi-
nated subscriptions cannot be used. For subscriptions that are not explic-
itly terminated, ordinary properties of key expiration (i.e., the fact that a
service doesn’t work using expired keys) terminate expiring subscriptions.

We now turn our attention to low-volume fraud. We wish to detect and
reduce activity related to low-volume fraud (i.e., R2). We do not concern
ourselves with low-volume sharing within a subscription a sufficient
threat, since the expected loss is minimal and prevention is virtually
impossible. Direct sharing of certificates is minimized, since the inconve-
nience should outweigh the cost of subscribing (assuming this cost is not
prohibitively expensive). Also, sharing a certificate requires the sharer to
trust the recipient to return an unspent certificate to the sharer instead of
keeping it, turning it in for a refund, or passing it on to someone else who
may not return it. Determined customers could still set up a proxy service
that would permit relatively low-volume subscription sharing with minimal
risk of loss. There remains the risk of illegal activity. Since illegal activity
cannot occur at high volume, it does not seem likely to be outweighed by
monetary benefit. If this is nonetheless viewed as a threat, we can use the
audit mechanisms discussed below (in Section 4) as a countermeasure.

Obtaining new subscriptions fraudulently can be detected and mini-
mized, since each request for a new certificate by an individual customer is
recorded. If this is a concern, then we can require authentication mecha-
nisms during registration and off-line appeals or use the audit mechanisms
in the next section. It is impossible to use terminated subscriptions for low
volume fraud for the same reasons that they could not be used for the
high-volume fraud.

Finally, we argue that theft of payment is not possible (R3), due to the
confidentiality of the first registration message, the fact that KV is only
used in the UST protocols, and that the payment is integrity-protected with
respect to the rest of the message, which has meaning only in the context of
the current registration. Direct theft of a refund is similarly protected by
the confidentiality and freshness of KCV. Indirect theft of a refund, by direct
theft of a subscription, is addressed in Section 3.6.

4For example, in the protocols of the next section, using Iaudit ties the transaction requester
back to a particular subscription.

374 • S. G. Stubblebine et al.

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

3.5 Customer Privacy

We have two requirements for customer privacy: anonymity (5) and protec-
tion against profiling (4), both of which we address at once. The amount of
privacy that customers have from each other and from the vendor depends
on many factors, for example, the number of customers using a given
service key and their patterns of usage. It is therefore infeasible to provide
a rigorous characterization of the privacy provided by the basic protocol.
We can, however, note the conditions that make it impossible for the
vendor to link one spent certificate in a chain to the next. First, the
customer’s identity is not revealed by the connection between the vendor
and the customer (or the communications medium in the connectionless
case). Mechanisms for providing this assurance are discussed in Section
6.3. Second, the customer chooses nonces at random. Third, blinding
messages works, i.e., in absence of the blinding factor, identities cannot be
correlated to the messages themselves.

3.6 Guarantee of Contracted Service

We now argue that customers cannot be denied a service for which they
contracted (i.e., 6), given that vendors are willing to provide the service
(i.e., 6). This assumption covers both the competence and the intent of the
vendor. For example, we assume that the vendor generates the right
certificate: certificateC 5 unblinded~@h~NC!#S.

By assumption A5, every message is eventually received if the sender
keeps trying to send it. So we may proceed on the assumption that all sent
messages are received. (If receipt of a message takes exceedingly long,
offline appeal is available to rectify this.) Hence our analysis of 6 will
proceed on the assumption that all sent messages are received.

Assuming the customer chooses a good KCV and a fresh nonce, the
redemption protocol guarantees the transaction request will be processed
and a new certificate issued. (If a customer unluckily chooses a spent
nonce, he should be able to appeal to the vendor offline. With an adequate
nonce space, this should be very unlikely, certainly less likely than simply
losing certificates. So vendors should be leery of more than a few total
requests of this type.) The nonce in the certificate the customer spends is
only known to him or her and the vendor (due to encryption). Thus it is not
possible for others to steal the unspent certificate. Also, the spending of
that certificate is tied to the new candidate certificate and transaction
request by KCV. So the vendor who follows the protocol will only service
valid transaction requests and will only sign and send the legitimate
candidate certificate to the customer. And only that customer knows the
associated nonce. No one can have his request serviced at the expense of a
valid customer. Similarly, no one can steal a subscription, either for their
own use or to turn in for any potential refund.

Unlinkable Serial Transactions: Protocols and Applications • 375

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

4. UST PROTOCOL WITH AUDITING

As we have noted above, the primary deterrence against sharing of sub-
scriptions is inconvenience and possible loss of the remainder of the
subscription if the subscription borrower fails to return a token. But it may
be useful to monitor subscription use, to see whether a subscription is being
used more heavily than expected. This may indicate fraud.

We now describe a protocol that increases the vendor’s ability to detect
unauthorized sharing of subscriptions. To distinguish protocols discussed
in the paper thus far from those we are about to describe, we will
collectively refer to the protocols in this section by the term USTA.

4.1 Registration for UST with Audit

The USTA registration protocol is similar to the original UST registration:

Message 1. C 3 V : $Payment, Iaudit, KCV%V,

@Request for certificate of type S, C, h~Ni!#KCV

Message 2. V 3 C : @h~N1!#S ~OR @Not Approved#KCV!

We now describe the new fields in the protocol messages: in message 1,
Iaudit is some information that a customer is typically unwilling to share.
For example, it may be the personal information the subscriber used when
purchasing the subscription: name, address, and credit card number. The
customer will be obliged to present this information when challenged in an
audit, described in Section 4.3.

4.2 Certificate Redemption for UST with Audit

Message 1.
C 3 V : $@h~Ni!#S, Ni, KCV%V,

@Request for transaction of type S, h~Ni, Iaudit, Salt!, h~Ni11!#KCV

Message 2. V 3 C : @Approved#KCV@h~N1!#S ~OR@Not approved#KCV

OR @Audit#KCV!

Message 3. C 7 V : @Transaction#KCV . . .

Message 4. V 3 C : @h~Ni11!#S

The protocol is largely the same as before, except that another field
(which is only used if an audit occurs) is added to message 1; message 2
might now be Audit as well as Approved or Not approved. If the response is
Audit, then a special audit occurs in which C must present some proof that
he or she is a valid customer within a short period of time. This protocol is
set out presently. In particular, C must prove knowledge of Iaudit, which
was sent to V during registration. If this is satisfactory, a new certificate is
issued. If it is not satisfactory or if C does not comply, then the protocol

376 • S. G. Stubblebine et al.

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

terminates, and the certificate is logged along with a note that it was used
during a failed audit. In either case, no transaction takes place and so
audited customers are not linked to specific transaction requests. The main
purpose of audits here is to serve as a secondary deterrent to sharing a
subscription with a noncustomer. (The primary deterrent is the inconve-
nience of passing the certificate back and forth between those sharing, as
compared to the cost of obtaining another subscription.) During an audit,
the customer must reveal Iaudit. So the borrower of a subscription must
either present the subscriber’s personal information or the borrower will
fail the audit. In the latter case, the subscriber looses the subscription
(chain) because the subscriber knows that he or she is committing fraud and
will not share the Iaudit with the borrower. In the former case, the vendor
will get statistical information about usage of the subscription. If a partic-
ular subscription is being overused, that subscription can be flagged, and
the token is not replaced in a subsequent audit.

As always, we assume that something is done to make each use of KCV in
a protocol session unique and tied to previous uses within that run. For
example, if a transaction itself has multiple steps, or multiple transactions
are allowed for each spent certificate (e.g., message 3 repeats), KCV should
change for each use. Thus, sharing subscriptions by means of sharing
within a protocol run remains at least as inconvenient as sharing them by
passing the unspent certificate around. As we noted, although it is serial, it
is not centralized. We further note that, in USTA, this sharing is not as
risky as certificate sharing, since there is no possibility of audit once the
transaction is submitted. Should this be considered an important threat,
the suggestion above to allow only a single transaction per protocol run
solves this problem as well.

4.3 Audit

The audit protocol follows:

Message 1.
C 3 V : $@h~Ni!#S, Ni, KCV%V,

@Request for transaction of type S, h~Ni, Iaudit, Salt!, h~Ni11!#KCV

Message 2. V 3 C : @Audit#KCV

Message 3. C 3 V : $C, Ni, Iaudit, Salt%KCV

Message 4. V 3 C : @h~Ni11!#S ~OR @Not approved#KCV!

Message 1 in the certificate redemption and audit protocols is, of course,
the same. The “audit” field in message 1, h~Ni, Iaudit, Salt!KCV, is included
for audit purposes only. The hash argument must be revealed during an
audit. The only way a subscription borrower without Iaudit can produce a
proper audit field in message 1 is if he contacts someone who does possess
Iaudit before each execution of the redemption protocol. This adds greatly to

Unlinkable Serial Transactions: Protocols and Applications • 377

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

the inconvenience of such sharing. Salt is a random value to prevent the
vendor from associating customers with transactions via a simple exhaus-
tive search. (Even if no audit occurs, once the vendor knows the nonce
value in the spent certificate he or she might try to associate the transac-
tion request with the Iaudit registered for that customer by searching
through the list of known secrets. The random value Salt prevents the
vendor from being able to confirm the “guessed-at” associations.) The nonce
Ni is included in the audit field to further complicate sharing. A customer
might be willing to lend the subscription to someone even if the customer
does not trust that person with Iaudit. If the audit field does not contain Ni,
the borrower needs to contact the legitimate customer only during an audit
to preserve the subscription. At this point, with Ni in the audit field, it is
too late .

Similarly to the basic certificate-redemption protocol, if message 4 is

@Not approved#KCV,

the protocol terminates. Unlike the basic certificate-redemption protocol,
there is no transaction phase. So there is no direct link between any
identifying information revealed in the audit and any particular transac-
tion. However, by exercising the audit check frequently or at strategic
times, the vendor can learn both the customer’s usage frequency and
patterns. This might allow the vendor to correlate later transactions (and
possibly earlier transactions) with the particular customer. The customer
might counter this limitation by employing a masking scheme on top of the
basic protocol. However, this can increase the load on the subscription
service considerably. Customers might also counter such vendor analysis
by delaying ordinary transaction requests for a random amount of time
following an audit. This places no extra burden on the subscription service,
but may cause customers inconvenience substantially beyond that of the
audits themselves. Since audits are a secondary deterrent to abuse, they
might be conducted infrequently. The tradeoffs between threats to anonym-
ity and the deterrence effect on subscription sharing are difficult to assess
a priori. Hence, exactly how frequently audits should be made is currently
difficult to say.

As in UST, the service in USTA must remember the sequence of mes-
sages in any run of this protocol in case of a broken connection. If the
response in message 2 is Audit, V should keep a record of the protocol run
even if C properly identifies himself upon reestablishing the connection. It
may be that a cheater broke the connection and then quickly notified the
legitimate customer of the audit. If some customer breaks an audit protocol
repeatedly, a vendor may become suspicious and decide not to renew the
customer’s certificate.

For efficiency, an acknowledgment message may be added:

Message 5. C 3 V : @Ack#KCV

378 • S. G. Stubblebine et al.

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

In message 3 of the audit protocol we explicitly use KCV as an encryption
key. In other cases we encrypted it for the vendor using V. (In practice, the
symmetric key KCV is typically used in favor of the computationally
expensive public key V.) However, it is essential that V not be used in
message 3, since that would allow customers to share their subscriptions
and produce responses to audit challenges without revealing their secret
Iaudit to those with whom they shared.

4.4 Terminating a USTA Subscription

Customer-initiated termination of a USTA subscription is a variant of
USTA certificate redemption, it does not, however, trigger an audit. Termi-
nation requires the customer to prove she or he knows Iaudit (unlike
termination in the basic unlinkable serial protocol) and has an unspent
certificate. If a subscription is terminated, the customer may be refunded
a portion of his or her subscription cost. Since Iaudit is assumed to be
something the subscriber is unwilling to share, knowledge of Iaudit demon-
strates that the subscriber is terminating the subscription and is entitled
to the refund.

Message 1.
C 3 V : $@h~Ni!#S, Ni, Iaudit, KCV%V,

@Request for transaction of type ~S Termination!, C#KCV

Message 2. V 3 C : ~Refund!KCV ~OR @Not approved#KCV!

Refunds may be prorated based on the vendor’s policy for early termina-
tion. Should the subscription include multiple chains of certificates (e.g.,
for a workstation and a laptop), one termination transaction should be
possible per chain. In message 2, we encrypt using KCV, since we do not
require that the customer possess a private key.

As before, an acknowledgment message may be added for efficiency:

Message 3. C 3 V : @Ack#KCV

4.5 Reducing High-Volume Fraud by Auditing Subscription Use Levels

Given an appropriate sampling rate, the level of subscription use can be
determined by the frequency at which a subscription appears in an audit.
The vendor can make use of this fact by charging according to the use level.
By doing so, the vendor can effectively reduce the profit margins (and hence
incentive) associated with high volume, since these subscriptions appear
more frequently in an audit and are charged at a higher subscription rate.
Alternatively, someone intending to commit fraud could purchase addi-
tional subscriptions. However, this again has the desirable effect of increas-
ing revenue and satisfying our goal of reducing high-volume fraud.

Unlinkable Serial Transactions: Protocols and Applications • 379

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

4.6 Audit with Client-Side Certificates

In USTA, Iaudit is used as proof of the subscriber’s identity. Client certifi-
cates could also be used to the same effect, by challenging the subscriber to
use his or her private key, for example. The value of such certificates (in
this application) depends upon how thoroughly the client was vetted before
being granted a certificate, and on the consequences of private key compro-
mise. For example, even if certificates must be obtained in person with
government identification, if the certificates are not used anywhere but in
UST, the consequences of compromise are not severe. Even if the certifi-
cates can be used in many applications, if they can be revoked easily
without penalty to the user, the consequences of client certificate-sharing
are not severe.

So a UST vendor cannot use client-side certificates in Audit until most
customers have them and unless clients perceive that their private keys
must indeed be kept private.

5. APPLICATIONS OF UNLINKABLE SERIAL TRANSACTIONS

Until now we have focussed on basic subscription services as the applica-
tion of unlinkable serial transactions. We now explore both expansions of
the basic subscription application and other applications as well. We simply
describe these applications without giving full details on how to adapt the
unlinkable serial transactions for them. Generally, it will be straightfor-
ward to see how to do so.

5.1 Pay-Per-Use Within a Subscription

Certain transactions may require extra payment by a customer. Next, we
describe a means to allow pay-per-use within a subscription. The vendor
becomes a mint for a simple, single denomination, digital tokens. Digital
tokens are to digital cash roughly as tokens in a game arcade are to coins.
The vendor may bill for these tokens by credit card, or some other
mechanism.

During the transaction phase (message 3 in the certificate-redemption
protocol), the customer spends previously purchased tokens. How do we
guarantee that the customer pays the vendor for the pay-per-use transac-
tion? Either the vendor never releases the new blinded certificate (message
4) unless he is paid or we assume some protocol for fair exchange [Franklin
and Reiter 1997; Camp et al. 1996]. The latter choice properly partitions
responsibility without complicating recovery.

There are alternatives to this protocol. For example, certificates could
include a credit balance, which must be paid periodically. Payment is made
as a transaction. There is no harm in this transaction identifying the
customer because it is only for purposes of payment. The main limitation
on this approach is that the credit balance increases monotonically. This
may allow the vendor to link transactions, and even tie them to particular
customers.

380 • S. G. Stubblebine et al.

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

5.2 Third-Party Subscription Management

Vendors may be interested in making the anonymity afforded by our
approach available, but may be less enthusiastic about the necessary
overhead in maintaining a subscription, e.g., keeping track of spent certif-
icates. Along with the ordinary overhead of maintaining subscriptions,
handling billing, etc., vendors may choose to hire out the management of
subscriptions. It is straightforward to have the vendor simply forward
transaction requests to a subscription management service, which then
negotiates the business (certificate management) phase of the protocol with
the customer. Once this is completed, the transaction phase can proceed
between the vendor and the customer as usual.

5.3 Multivendor Packages and Discount Services

For multivendor packages, we can purchase what is effectively a book of
coupons good at a variety of individual vendors. A coupon book works by
vendors authorizing the package vendor to issue certificates for their
services. Customers then engage in a protocol to obtain the basic certifi-
cates.

If the coupons in the book are meant to be transferable, there is nothing
more to the protocol. If, however, they are not, we must add a serial
unlinkable feature to make sharing more cumbersome. In this case, when a
customer submits a certificate for a service he or she must also submit a
package certificate. The package certificate must be updated as in the basic
protocol. Service certificates are not to be updated: they can only be
redeemed once. Vendors could all be authorized with the necessary key to
update the package certificate. Alternatively, the processing of the certifi-
cates could be handled by the package issuer, as in the third-party
application of unlinkable serial transactions just given. Notice that individ-
ual vendors need not be capable themselves of producing coupons for their
own services. It is enough that they can confirm the signatures associated
with their services.

Package books such as those just described often offer discounts as a
sales incentive, over the vendors’ basic rates. Another form of discount is
one that is made available to members of some group. Unlinkable serial
transactions are useful for allowing someone to demonstrate such member-
ship without revealing his or her identity. Depending on the application,
the various vendors offering discounts can sign new certificates or signing
can be reserved for some central membership service in association with
any request for discount at a vendor. Again, the latter case is similar to the
third-party application above.

5.4 Membership and Voting

The example just mentioned shows that the basic idea of unlinkable serial
transactions can have applications outside of commerce. Specifically, it
should be useful for any application in which membership in some group
must be shown, and where the inconvenience of sharing a serial certificate

Unlinkable Serial Transactions: Protocols and Applications • 381

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

and the risk of audit outweighs the advantages of spoofing group member-
ship, including some applications requiring proof of age or residency.

As another example, consider a voter registration certificate. At voting
time, the voter spends his certificate, is issued a new certificate, and votes.
The new certificate is signed by a key that becomes valid after the current
voting period expires, so voters cannot vote twice. In this case, there is no
possibility of sharing the certificate for a single election. If there is concern
that formerly eligible voters continue to vote once their eligibility has
expired, certificate keys could be subject to occasional expiration between
elections. Ineligible voters would then be eliminated, since they would be
unable to register for new seed certificates. This example is only meant to
show the ease with which UST can be used for purposes of showing
membership in a group. Voting has many properties, e.g., assuring that
votes have not been altered or eliminated from the final tally, that we do
not claim to have even approached. Voting protocols intended to provide
many of the properties of a fair election are more complex. Some of these
even make use of blind signatures; although, not surprisingly, their sys-
tems are rather different from the ones given here [Fujioka et al. 1993;
Cranor 1996].

6. RELATED WORK

6.1 Digital Cash

Digital cash, especially anonymous e-cash as presented by Chaum et al.
[1990], is characterized by several requirements [Okamoto and Ohta 1992],
that is: being independent of physical requirements, being unforgeable and
uncopyable, giving the capacity to make untraceable purchases, being
offline, transferable, and subdividable. No known e-cash system has all of
these properties, and certain properties, especially e-cash, which can be
divided into unlinkable change, tend to be computationally expensive.

E-cash can either be online or offline. In an online scheme, before
completing the transaction, the vendor can verify with a bank that the cash
has not previously been spent. In an offline scheme, double-spending must
be detectable later, and the identity of the double spender must then be
revealed. Previously agreed-upon penalties can then be applied that make
double spending not cost-effective.

Chaum’s notion of blinding [Chaum 1985] is a fundamental technique
used in anonymous e-cash and in assigning pseudonyms. A bank customer
may want a certain amount of e-cash from the bank, but may not trust the
bank not to mark (and record) the e-cash in some way. One solution is for
the bank to sign something for the customer that the bank cannot read,
while the customer presents the bank with evidence that the bank is
signing something legitimate. Chaum’s blinding depends on the commuta-
tivity of modular multiplication operations. Therefore, the customer can
create an e-cash certificate and multiply it by a random number called a
blinding factor. If the bank signs the blinded certificate, the customer can

382 • S. G. Stubblebine et al.

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

then divide out the blinding factor. The result is the unblinded certificate
signed by the bank. But the bank does not know what it signed.

How can the customer assure the bank that the blinded certificate is
legitimate? In Chaum’s scheme, the customer presents the bank with many
blinded certificates that may differ in serial numbers, but not in denomina-
tion. The bank chooses the one it will sign and asks the customer for the
blinding factors of the others. If the randomly chosen certificates turn out
to be legitimate when unblinded, the bank can have confidence that the
remaining blinded certificate is legitimate too.

One online e-cash scheme is presented in Simon [1997]. To obtain an
e-cash certificate that only he or she can use, a customer presents the bank
with a hash of a random number. The bank signs an e-cash certificate
linking that hash with a denomination. To use the e-cash, the customer
reveals the random number to a vendor, who in turn takes the e-cash to a
bank. Since hashes are one-way functions, it would be very hard for
someone other than the customer to guess the secret that allows spending
the e-cash. After the money is spent, the bank must record the hash to
prevent it from being spent again. This scheme can be combined with
blinding to hide the actual e-cash certificate from the bank during with-
drawal.

One offline e-cash scheme is presented in Franklin and Yung [1992].
There, the bank signs blinded certificates. To spend the e-cash, the cus-
tomer must respond to a vendor’s challenge. The response can be checked
by inspecting the e-cash. Double spending is prevented because the chal-
lenge/response scheme is constructed so that the combination of responses
to two different challenges reveals the identity of the customer. As long as
the customer does not double spend, his identity is protected. Nobody but
the customer can generate responses, so the customer cannot be framed for
double spending.

It may be the case that truly anonymous unlinkable e-cash enables
criminal activity. Several key escrow- or trustee-based systems [Brickell et
al. 1995] have been developed that can reveal identities to authorities who
obtain proper authorizations.

Our notion of unlinkable certificates came from asking the following
question: What else shares some of the features of digital cash? Unlinkable
certificates share many of these features: they must preserve the user’s
anonymity and not be traceable, and they must protect the issuer and not
be forgeable or copyable. Unlike e-cash, however, transferability is not
desirable. Also, unlike e-cash, UST is not a payment vehicle because
spending, i.e., presenting a UST certificate, does not change the funds
available to the customer. He starts with a certificate, gains access to a
service in exchange, and ends up with both the service and a certificate.
The UST certificate is not cash but an electronic membership pass. Like a
membership pass, and unlike cash, its value is tied to the amount of time
remaining in the membership.

We use hashing random numbers and blinding in our development of
unlinkable certificates. Our unlinkable certificates differ from Chaum’s

Unlinkable Serial Transactions: Protocols and Applications • 383

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

pseudonyms [Chaum 1985], which are an alternative to a universal identi-
fication system. Each pseudonym is supposed to identify its owner to some
institution and not be linkable across different institutions. Unlinkable
serial certificates are designed to be unlinkable both across institutions
and across transactions within a single institution. In particular, we want
the vendor to be unable to link transactions to a single customer, even if
that customer had to identify himself initially (i.e., during the subscription
process). At the same time, the vendor needs to be able to protect himself
against customers that abuse his service.

Our blinding also differs from the usual approach. Typically, some
mechanism is necessary to assure either the issuing bank or receiving
vendor that the certificate blindly signed by the issuer has the right form,
i.e., that the customer has not tricked the signer into signing something
inappropriate. We described Chaum’s basic approach above. By moving
relevant assurances to other parts of the protocols, we are able to eliminate
the need for such verification. The result is a simplification of the blinding
scheme.

6.2 Authentication, Authorization, and Payment

We can obtain access to data or services online by a variety of means. Those
that are not freely available require some form of authentication, authori-
zation, payment, or a combination of the three. Some are available to
anyone, e.g., most Web pages can be downloaded by anyone from any
location. Some requests provide an identity (e.g., anonymous ftp does,
although there is typically virtually no authentication). Some, such as the
Kerberos-like authentication protocols, require authentication and authori-
zation. Some require payment and authentication, e.g., subscription ser-
vices. UST is a mechanism that can be used for a variety of authorization
purposes, subscriptions, access control, etc. But it is not the same as any of
the authentication, authorization, or payment mechanisms that have al-
ready been devised.

UST is not a simple password-based access scheme: it can be used
anonymously, so that the authorization verifier cannot link the password to
the authorizee. It is not a pseudonym scheme: when it is used to provide
anonymity, it provides perfect forward and backward anonymity, i.e.,
linking one authorization attempt to the true individual does not reveal
anything about any future or past authorization attempts by that individ-
ual.

UST is not like current software-based one-time password schemes (e.g.,
S/Key [Haller 1994]) because neither the authorizee nor the authorizor or
authorization verifier can predict future passwords. It is not like time-
based one-time passwords (e.g., SecureID token) in that we don’t require
clock synchronization between authorizee and authorization verifier.

An approach to anonymous membership authentication which has many
goals in common with ours is presented in Schechter et al. [1999]. In their
protocol, for each transaction, the vendor completes a key negotiation

384 • S. G. Stubblebine et al.

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

protocol with an anonymous subscriber by (essentially) responding to all
subscribers. Only the subscriber who initiated the protocol can interpret
the response, but the vendor never learns which subscriber is negotiating,
only that some subscriber is. The vendor’s response requires a public key
operation for each possible subscriber. So the cost of transactions increases
linearly with the number of subscribers. However, it is easy for the vendor
to remove a subscriber: the vendor simply no longer uses the subscriber’s
public key in the protocol.

As is often the case, there seems to be an unfortunate tradeoff between
cheap transactions and cheap membership maintenance. UST has cheap
transactions, but expensive subscriber removal; Schechter et al. [1999] has
expensive transactions but cheap subscriber removal. Although it appears
to us that the more frequent operations (transactions) should be made
cheap, the more interesting observation is that both papers propose proto-
cols that make tradeoffs at the opposite ends of the spectrum. Furthermore,
both papers use partitioning to reduce the cost of the expensive operation.

6.3 Anonymity Services

How can customers keep their private information private if communica-
tion channels reveal identities? For example, vendors having toll-free
numbers can subscribe to services that reveal callers’ phone numbers to
vendors, thereby obviating any pseudonym the customers may be using. A
similar service in the form of caller-id is now available to many private
customers. If a communication channel implicitly reveals identities, how
can customers’ private information be protected?

The solution lies in separating identification from connections. The
connection should not reveal information. Identifying information should
be carried over the connection. (Of course, vendors and private parties are
welcome to close connections that do not immediately provide sufficient
identifying information.) As discussed below, depending upon one’s envi-
ronment and threat model on the Internet, several solutions exist. How-
ever, understanding the type and degree of protection offered by the above
anonymity services is important. Work specifying cryptographic protocols
using CSP and analyzing some anonymity protocols using a model checker
is found in Schneider and Sidiropoulos [1996]. More recent work formaliz-
ing a broad range of anonymity properties can be found in Syverson and
Stubblebine [1999].

For e-mail, anonymous remailers can be used to forward mail through a
service that promises not to reveal the sender’s identity to the recipient.
Users’ worried about traffic analysis can use Babel [Gülcü, and Tsudik
1996] or other Mixmaster-based [Cottrell 1995] remailers that forward
messages through a series of Chaum mixes [Chaum 1981]. Each mix can
identify only the previous and next mix, and never (both) the sender and
recipient.

For Web browsing, the Anonymizer [1997] provides a degree of protec-
tion. Web connections made through the Anonymizer are made anonymous.

Unlinkable Serial Transactions: Protocols and Applications • 385

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

By looking at connection information, packet headers, and so on, the
destination Web server can only determine that the connection came from
(through) the Anonymizer.

LPWA [Gabber et al. 1997; ProxyMate 1999] (formerly known as Janus,
now known, commercially, as ProxyMate) is a “proxy server that generates
consistent untraceable aliases for you that enable you to browse the Web,
register at web sites, and open accounts, and be ‘recognized’ upon returning
to your accounts, all while still preserving your privacy.” Like the Anony-
mizer, the LPWA proxy is at a server that is remote from the user
application. Hence it is subject to the same trust and vulnerability limita-
tions.

It is possible, however, to shift trusted elements to the user’s machine (or
to a machine on the boundary between the trusted LAN and the Internet).
Shifting trust in this way can improve the security of other privacy services
such as the Anonymizer and LPWA, which are currently centralized to
provide an intermediary that masks the true source of a connection. If,
instead, anonymous connections are used to hide the source address, the
other functions of these services may run as a local proxy on the user’s
desktop. Security is improved because privacy filtering and other services
are done on a trusted machine and because communication is resistant to
traffic analysis, and there is no central point of failure.

Crowds is one approach to decentralized anonymous Web connections
[Reiter and Rubin 1998]. Essentially, it is a distributed and chained
anonymizer with encrypted links between crowd members. Web traffic is
forwarded to a crowd member, who flips a weighted coin and, depending on
the result, forwards it either to some other crowd member or to the
destination. This makes communication resistant to local observers. Since
repeated transactions from the same crowd member emerges from the
crowd at the same point, profile freedom is limited to at best the number of
crowd members whose connections emerge from the crowd at that same
member.

Onion routing also provides decentralized anonymizing services for a
variety of Internet services over connections that are resistant to traffic
analysis. Like Babel, onion routing can be used for e-mail. Onion routing
can also be used to hide Web transactions, remote logins, and file transfers.
If the communicating parties have secure connections to endpoint onion
routers, communication can be anonymous to both the network and observ-
ers, but the parties may reveal identifying information to each other. The
goal of onion routing is anonymous connections, not anonymous communi-
cation. The most up-to-date (albeit very terse) published description of
onion routing is given in Goldschlag et al. [1999]. Other application-
independent systems that complicate traffic analysis in networks have been
designed or proposed. In Fasbender et al. [1996], a cryptographically
layered structure similar to onions in onion routing is used to forward
individual IP packets through a network, essentially building a connection
for each packet in a connectionless service. In Pfitzmann et al. [1991],

386 • S. G. Stubblebine et al.

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

mixes are used to make an ISDN system that hides the individual within a
local switch originating or receiving a call.

7. CONCLUSION

In this paper we presented a protocol for unlinkable serial transactions
suitable for a variety of network-based subscription services. It is the first
protocol to use cryptographic blinding to enable subscription services. The
protocol prevents the service from tracking the behavior of its customers,
while protecting the service vendor from abuse due to simultaneous or
“cloned” use by a single subscription. We evaluated the security of the basic
protocol. The basic protocol is extended to include auditing to further deter
subscription sharing. We described other applications of unlinkable serial
transactions for pay-per-use transactions within a subscription, third-party
subscription management, multivendor coupons, proof of group member-
ship, and voting.

Our approach is based on primitives supporting e-cash, but is designed to
function in a credit card commercial infrastructure as well. By manipulat-
ing what must be trusted and by whom, as compared with their more
common applications, we are also able to simplify the use of such primitives
in our protocols. Our approach relies on anonymous communication: there
is no sense in using anonymous tokens, pseudonyms, etc., if identities are
revealed by the communications channel. Our approach prevents profiling
by vendors. However, the use of trusted intermediaries for profiling may be
beneficial to both the customer and vendor, e.g., for marketing purposes. It
might be complicated to incorporate such trusted intermediaries with the
protocols we have presented. But decentralizing may ultimately provide
better assurance to customers. For example, profiles can be collected locally
at a user’s workstation. This lets individuals control their own profiles.
Individuals could a contact marketer through an anonymous connection
(cf., Section 6.3) and request advertisements suited to their own profiles.
Once individuals close the connection, the marketer can no longer contact
them.

REFERENCES

1997. Anonymizer. www.anonymizer.com.
BRICKELL, E., GEMMELL, P., AND KRAVITZ, D. 1995. Trustee-based tracing extensions to

anonymous cash and the making of anonymous change. In Proceedings of the Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms (San Francisco, CA, Jan.) ACM Press, New
York, NY, 457–466.

CAMP, L. J., HARKAVEY, M., YEE, B., AND TYGAR, J. D. 1996. Anonymous Atomic
Transactions. In Proceedings of the 2nd USENIX Workshop on Electronic Commerce (Nov.),
USENIX Assoc., Berkeley, CA.

CHANDY, K. M. AND MISRA, J. 1988. Parallel Program Design: A Foundation. Addison-Wesley
Longman Publ. Co., Inc., Reading, MA.

CHAUM, D. 1981. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24, 2 (Feb. 1981), 84–88.

Unlinkable Serial Transactions: Protocols and Applications • 387

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

CHAUM, D. 1983. Blind signatures for untraceable payments. In Proceedings of the
Conference on Advances in Cryptology (CRYPTO ’82, Santa Barbara, CA), D. Chaum, R. L.
Rivest, and A. T. Sherman, Eds. Plenum Press, New York, NY, 199–203.

CHAUM, D. 1985. Security without identification: transaction systems to make big brother
obsolete. Commun. ACM 28, 10 (Oct. 1985), 1030–1044.

CHAUM, D., FIAT, A., AND NAOR, M. 1990. Untraceable electronic cash. In Proceedings of the
Conference on Advances in Cryptology (CRYPTO ’88, Santa Barbara, CA, USA, Aug. 21–25,
1988), S. Goldwasser, Ed. Springer Lecture Notes in Computer Science Springer-Verlag,
New York, NY, 319–327.

CORTTRELL, L. 1994. Mixmaster and remailer attacks. www.obscura.com/loki/remailer-
essay.html.

CRANNOR, L. 1996. Electronic voting. Crossroads 2, 4 (Apr.).
FASBENDER, A., KESDOGAN, D., AND KUBITZ, O. 1996. Variable and scalable security: Protection

of location information in mobile ip. In Proceedings of the 46th IEEE Conference on
Vehicular Technology (Atlanta, GA, Mar.)

FRANKLIN, M. K. AND REITER, M. K. 1997. Fair exchange with a semi-trusted third party
(extended abstract). In Proceedings of the 4th ACM Conference on Computer and Commu-
nications Security (CCS ’97, Zurich, Switzerland, Apr. 1–4, 1997), R. Graveman, P. Janson,
C. Neumann, and L. Gong, Eds. ACM Press, New York, NY, 1–5.

FRANKLIN, M. AND YUNG, M. 1992. Towards provably secure efficient electronic cash. Tech.
Rep. CUCS-018092. Columbia Univ., New York, NY.

FUJIOKA, A., OKAMOTO, T., AND OHTA, K. 1993. A practical secret voting scheme for large scale
elections. In Proceedings of the Conference on Advances in Cryptology (CRYPTO ’92, Santa
Barbara, CA), E. F. Brickell, Ed. Springer-Verlag, New York, 244–251.

GABBER, E., GIBBONS, P., KRISTOL, D., MATIAS, Y., AND MAYER, A. 1999. On secure and
pseudonymous client-relationships with multiple servers. ACM Trans. Inf. Syst. Secur. 2, 4
(Nov.).

GOLDSCHLAG, D., REED, M., AND SYVERSON, P. 1999. Onion routing for anonymous and private
internet connections. Commun. ACM 42, 2 (Feb.), 39–41.

GONG, L. AND SYVERSON, P. 1998. Fail-stop protocols: An approach to designing secure
protocols. In Proceedings of the 5th IFIP International Working Conference on Dependable
Computing for Critical Applications (Urbana-Champaign, IL, Sept. 1995), R. K. Iyer, M.
Morganti, W. K. Fuchs, and V. Gligor, Eds. IEEE Computer Society Press, Los Alamitos,
CA, 79–99.

GULCU, C. AND TSUDIK, G. 1996. Mixing email with Babel. In Proceedings of the 1996 Internet
Society Symposium on Network and Distributed System Security (San Diego, CA,
Feb.), 2–16.

GUNTHER, C. 1987. An identity-based key-exchange protocol. In Proceedings of the Conference
on Advances in Cryptology (EUROCRYPT ’89) Springer-Verlag, New York, 29–37.

HALLER, N. 1994. The s/key one-time password system. In Proceedings of the ISOC
Symposium on Network and Distributed System Security (San Diego, CA, Feb. 1994).

MENEZES, A. J., VAN OORSCHOT, P. C., AND VANSTONE, S. A. 1997. Handbook of Applied
Cryptography. CRC Press, Inc., Boca Raton, FL.

OKAMOTO, T. AND OHTA, K. 1992. Universal electronic cash. In Proceedings of the Conference
on Advances in Cryptology (CRYPTO ’91) Springer-Verlag, New York, NY, 324–337.

PFITZMANN, A., PFITZMANN, B., AND WAIDNER, M. 1991. ISDN-mixes: Untraceable communica-
tion with very small bandwidth overhead. In Proceedings of the GI/ITG Conference on
Communication in Distributed Systems (Feb., Mannheim, Germany) 451–463.

POINTCHEVAL, D. AND STERN, J. 1996. Provably secure blind signature schemes. In
Proceedings of the Conference on Advances in Cryptology (CRYPTO ’96, Santa Barbara, CA),
N. Koblitz, Ed. Springer-Verlag, New York, 252–265.

1999. ProxyMate. www.proxymate.com.
REITER, M. K. AND RUBIN, A. D. 1998. Crowds: anonymity for Web transactions. ACM Trans.

Inf. Syst. Secur. 1, 1, 66–92.
SCHECHTER, S., PARNELL, T., AND HARTEMINK, A. 1999. Anonymous authentication of

membership in dynamic groups. In Proceedings of the Conference on Financial Cryptogra-

388 • S. G. Stubblebine et al.

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

phy (Anguilla, British West Indies, Feb. 99), M. Franklin, Ed. Springer-Verlag, New York,
184–195.

SCHNEIDER, S. AND SIDIROPOULOS, A. 1996. Csp and anonymity. In Proceedings of the
Conference on Computer Security (ESORICS 96, Rome, Italy), E. Bertino, H. Kurth, G.
Martella, and E. Montolivo, Eds. Springer-Verlag, New York, 198–218.

SET, 1999. SET Secure Electronic Transaction LL. www.setco.org
SIMONE, D. 1997. Anonymous communication and anonymous cash. In Proceedings of the

Conference on Advances in Cryptology (EUROCRYPT ’97) Springer-Verlag, New York,
61–73.

SYVERSON, P. AND STUBBLEBINE, S. 1999. Group principals and the formalization of
anonymity. In Proceedings of the Conference on Formal Methods (Toulouse, France, Sept.),
J. Wing, J. Woodcock, and J. Davies, Eds. Springer-Verlag, New York, 814–833.

SYVERSON, P., STUBBLEBINE, S., AND GOLDSCHLAG, D. 1997. Unlinkable serial transactions. In
Proceedings of the Conference on Financial Cryptography Springer-Verlag, New York, NY,
39–55.

Received: November 1997; revised: April 1999; accepted: April 1999

Unlinkable Serial Transactions: Protocols and Applications • 389

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.

